Wednesday, March 22, 2017

Why Small-Scale Regenerative Agriculture is so Important

For the last several months, I have been throwing down a whole lot of information. Thank you, loyal readers, for sticking with me. I am going somewhere with this. There are a great number of techniques that can be used to repair our degrading ecosystem, and do so while providing a comfortable living for those doing the repairs. But people need to understand how this all needs to work. We live in a society that is separated to a great extent from nature. In order to fix what needs to be fixed, we need to first bring people back to nature, to help them understand it and learn how to heal it.

But I’m getting a little ahead of myself. As I mention regularly, this is an engineering blog. I do my best to use engineering problem solving techniques. And the first and foremost among those is this: if you wish to solve a problem, you first have to define the problem. So, what is the problem we are facing? And I don’t mean global warming, degrading farm land, or carbon dioxide in the atmosphere. Those are symptoms. What is the problem? Let me offer my viewpoint on this.

The problem, as I see it, is an ultimate flaw with the changes made during the Industrial Revolution. Bear with me here. See, prior to the Industrial Revolution, some 90% of humanity lived a pastoral existence on small family farms. When the Industrial Revolution hit, it needed two things to function and grow: it needed workers, and it needed consumers. It is basic supply and demand. So farmers were encouraged, and sometimes forced, to leave their land and move to the cities. They were promised a better life and more prosperity. For the most part, that prosperity was finally realized during the 50s with an expansion of the middle class.

But it proved to be short-lived. As an economy grows, it builds wealth, actually creates it. For the last 15 years, those gains have largely gone to the elite and the middle class has seen no appreciable increase in earnings. Prices have continued to rise, though, so the difference between the two has caused a contraction of the middle class, with millions of people watching their standard of living decrease with little hope of reversing the slide. 

There is also a more insidious problem. The Industrial Revolution taught us that we could be separated from the land and that even our food production could be automated. The consequences have been disastrous. Ultimately, humans are biological beings and are intimately connected to the environment we live in in ways we are just beginning to understand. Land needs to be managed or the biological processes that keep it alive degrade. 

Industrial agriculture is a great example. If you take farmland with excellent soil containing lots of soil carbon and add synthetic fertilizers, the production goes through the roof. Profits increase wildly. But the reason it becomes so productive is that the synthetic fertilizers increase soil biological activity and they use all that stored soil carbon as a foodsource, burning through it in as little as a few years, or maybe a few decades at the outside. It is a perfect example of short term profit at the expense of long term viability.

So here we are. The profits that can be extracted have been. The rich are richer than they have ever been in the history of the world. They are trying harder and harder to find ways to increase profits. Wages have stagnated to the point that large swathes of humanity are barely making it paycheck-to-paycheck. Our environment is forfeit. We are looking at the looming threat of technological unemployment as more companies try to further cut expenses by automating as many tasks as possible. The outlook is bleak.

Or is it? Maybe this is exactly what we needed right now. See, momentum is the biggest obstacle to change. As long as everything is going along great, people won’t make changes. Comfort is hard to compete with. But discomfort and uncertainty, well, that has people craving change. Heck, a presidential candidate used it as his campaign slogan a couple of years back. The trick is for people to get to a very difficult realization: that they are on their own. As long as you rely on those in power for your livelihood, you are subject their whims and have little control. But when you decide to take control of your own life, that’s where the magic happens.

The question is, how? We live in an urban, and largely suburban, landscape. We like our connected, technological lifestyle. Who wants to give that up to move back to the country and pursue a homestead lifestyle? Well, lots of people, actually, but I am talking to the rest of us here. How can we live our modern lifestyle and still pursue some measure of self-sufficiency. Personally, I think that small-scale regenerative agriculture is the key here.

Small-scale regenerative agriculture is the perfect solution for the predicament we have ourselves in. It solves the problems on pretty much every level. There have been a number of significant advances since the last time we were an agrarian society. And I don’t mean in the technology of the tractors currently tearing up vast swaths of farmland. Things like organic farming (if you think this one is ancient, you probably don’t understand it), aquaponics, and mycoculture have all come a long, long way in the last 200 years or so. Technology can be employed in ways never dreamed of even 30 years ago. With careful layout and design, more food than ever can be grown in a smaller space all while regenerating the environment.

So what can small scale regenerative agriculture do to solve the problems at hand today? Let’s tackle them one by one and see.

Climate Change/Environmental Degradation
This one is probably the easiest to justify. Regenerative agriculture is, by definition, regenerative. This means reducing monoculture, increasing environmental diversity, and building soil. The simple process of building soil means adding carbon to the soil, a process also called Carbon Farming. With enough practitioners of this practice, significant amounts of carbon could be sequestered into the soils of the earth. Plus, the restoration of life to soil helps mitigate pollution and further increases environmental diversity, which will breathe life into ecosystems beyond the farming operation.

Stagnating Wages
In a household budget, there are two sides to the flow of money: income and expenses. Most people are struggling through increases in expenses while their wages have virtually stagnated for decades. It can be very frustrating to find more and more ways to cut expenses just to make ends meet. Introducing solar dollars to the household budget can breathe new life into the flow of money. With new methods and technologies, this can happen with only minimal additional effort on the part of the homeowner, but can result in a much tastier and healthier diet.

Technological Unemployment
As most are aware, machines are going to be taking all the jobs. I have heard projections as high as 60% of jobs will be lost over the next 20 years to automation. Personally, I think this move is highly shortsighted. While there will be a huge savings in production costs, that doesn’t really help if everyone is unemployed and can’t afford to buy gadgets at the new low cost. Regardless of how bad this move will allow companies to shoot themselves in the foot, it is coming. So, what can be done about it?

Simply put, people are going to have to become more self-sufficient. They will need to stop relying on employers for their livelihood. This used to be the way nearly everyone lived before the Industrial Revolution and they did so by living primarily off of solar dollars. Sustainable agriculture allows a return to this paradigm, allowing individuals to reduce or eliminate reliance on employers.

Urban Malaise
I read a comment recently that I thought was spot-on: You don’t hate Mondays. You hate capitalism. Maybe it is capitalism. Maybe it is our lack of connection to the natural world. Maybe it is a lack of meaning in our lives. Maybe it is knowing that we spend our days toiling away to build value for someone else. Maybe it is pollution. Whatever the cause, a general feeling of malaise, discontent, unhappiness, and restlessness are prevalent in our society. Small-scale regenerative agriculture hits pretty much all of those causes head-on. You are building value for yourself on your own land. You are working with and regenerating nature. I don’t think it is that hard to understand why gardeners are a happy lot.

As the nutrients are increasingly extracted from farmland, our food loses its nutritional value. We become disconnected from the nutrient cycle. By regenerating our own land and building nutrient-rich soil, we increase the nutrient content of the foods we eat. And by doing that small-scale, we reconnect ourselves to our own nutrient cycle.

Gardening is a great way to keep active. There is definitely work involved. This can help with fitness and flexibility. Reconnecting our bodies to the natural nutrient cycle will also help as our bodies will be getting all the nutrient-rich foods they need.

The best part of all this is that we don’t need to drop our modern lifestyle to realize all these benefits. Technology can play a big part in reducing the labor on gardening while still improving output. Universal availability of the internet means you can still ply your trade or profession by working part time online throughout the week to bring in additional income. We really can have the best of both worlds.

So, tell me, what did I miss? Are there other ways small-scale urban agriculture can change the world?

Thursday, March 9, 2017

Phoenix ASH & Regrowth

For the last several months, I have been hinting at this grand project I have been working on. I have felt it more important thus far to lay the foundation to talk about some of the concepts being implemented onsite. But I think I am in pretty good shape right now in terms of concepts being out there, and before I jump into my next series of posts, I wanted to take a moment to talk about the project I am currently working on.

The site is called Phoenix ASH & Regrowth. It is a half acre site in the Sunnyslope area a little north of downtown Phoenix. The project is an attempt to achieve as high a level of self-sufficiency as possible while simultaneously repairing the ecosystem onsite. The project site will also serve as a demonstration site to help promote these ideas and make significant improvements on a wide variety of fronts including food production, nutrition, flood prevention, urban heat island effect, air pollution, economic resiliency, erosion control, biodiversity, and much more. To achieve this, nearly everything we do onsite is to achieve one of  two goals: 1) Restore soil carbon, and 2) Promote biodiversity. While this may sound a little overly simplistic, these two things, when working in conjunction, cause a cascade of healthy biological functions that achieve everything else.

Let me take a moment to describe how this cascade works. Increasing the amount of carbon in the soil does two things primarily. The first is that it increases absorption of rainwater. This increases biological activity and helps mitigate flooding. The second is that it increases the fertility of the soil. As I have explained previously, carbon in the soil feeds the soil biome and increases the fertility of the soil and the availability of nutrients in the soil. By increasing the available moisture in the soil and fertility of the soil, plant growth is encouraged. Remember, as a gardener, my job is not to take care of the plants. My job is to take care of the soil and the soil takes care of the plants.

Once we have widespread growth of plants, we move to the next level. As I have already mentioned, the driver of ecosystem processes is the cycling of living matter from one organism to the next. This is where diversity comes in. Different organisms make use of different food sources and bring different benefits to the system. Rather than trying to dig through the science of biological systems, most of which doesn’t really exist yet (don’t even get me started on the faults with reductionist thinking employed by modern science), it is best to let the ecosystem find its own healthy equilibrium. We do that by including everything in the whole. There really are no weeds. The only caveat is that they must provide more benefit than they detract. So a pine tree was removed from the site because all it provided was shade. Oleanders were removed because they are highly toxic. And there are a couple of weeds we remove because of toxicity. Otherwise, everything is welcome.

Once the plants are growing, each one is valued for the benefits it brings. Edibles are harvested for human consumption. Grass and forbs are used for forage for the animals. Dead leaves and grass are harvested for compost. Trees are pollarded to provide wood to build more soil. At each level, the plant material runs through its cycle and is returned to the soil, increasing soil carbon and helping plant growth and diversity.

So let me talk for a moment about the various methods we employ onsite to achieve all of this:

Holistic Management, as taught by the Savory Institute, is more of a guiding principle. Everything we do is viewed through the lens of Holistic Management and its principles. It is through Holistic Management that we can make the best decisions for how to weave the myriad methods together into one cohesive structure. The site also serves as the Arizona Savory Hub (ASH) and the first urban demonstration site for the Savory Institute. We are very excited to demonstrate that Holistic Range Management, which is typically managed on large tracts of land in rural areas, can be applied in an urban setting.

Permaculture is another guiding principle. The permaculture core principles are also core values and guide what we do and how we rebuild a complete ecosystem onsite.

Animal Impact, as described in Holistic Management is an important part of how nutrients are cycled through plants and back into soil. Right now, we just have chickens and are using them to process forage and create compost. However, long term plans include goats and sheep, and maybe even miniature cows or rabbits. Each animal will have its own impact on the ecosystem, improving diversity and nutrient cycling.

Organic gardening, in its ideal form, builds soil carbon, reducing the need for synthetic fertilizers, pesticides, and herbicides. By not using chemistry to manage a biological system, the biological system is allowed to flourish, encouraging diversity and growing topsoil. Everything we do onsite at Phoenix ASH & Regrowth is organic.

While some of the organic matter is either processed in place (as in animal impact) or allowed to lie where it falls, much of the organic matter produced onsite is processed through the composting facility onsite. This turns decaying organic matter into high quality topsoil more rapidly so it can be spread back out where it is needed most. In addition, we use the chickens (Animal Impact) to process the compost. This allows the chickens to feed off of whatever they deem edible in the compost, including insects that are attracted to the rotting material. It also allows their droppings to be immediately incorporated into the compost. This helps the compost get hot and complete its cycle quickly. And when it is time for the compost to be turned? The chickens help with that, too.

At just 9” of rain a year, Phoenix is a desert. But with careful planning and a little infrastructure, the rain can be stretched really far. To do, this, we use two primary strategies at Phoenix ASH & Regrowth. The first is rainwater barrels. There are two rainwater barrels on each of the three buildings onsite. The two smaller buildings have smaller, flattened barrels that sit up against the building. These each hold a little over 500 gallons. On the largest building, there are two larger barrels, each holding about 2600 gallons. The smaller tanks are perhaps a little undersized for the areas they catch, and the larger tanks are a bit oversized. However, with a little planning and some plumbing, we are able to drain the smaller tanks into the larger as they fill up, assuring that no rain is lost. This water is used to water the gardens.

The second type of rainwater harvesting comes from offsite flow, or water that is flowing onto the property. The property has a wash flowing through it. While this was a major problem for previous owners, it is seen as an advantage at Phoenix ASH & Regrowth. With a little regrading, the site was turned into a series of retention basins. As each retention basin fills, it overtops into the basin below it. By doing this, all, or nearly all, of the offsite flow can be captured and stored in the ground. This has the added benefit of reducing downstream flooding. The best part is that the first basins built are already growing lots of vegetation and thus building soil carbon. The change in water infiltration is already visible, with no water standing in these basins a mere 24 hours after a big rain. The newer basins, which haven’t had much of a chance to grow vegetation yet, take 3 or 4 days to drain, even though they get less water.

Nitrogen Producing Trees
In desert ecosystems, and in particular degraded desert ecosystems, there is often a lack of nitrogen in the soil. This can be a limiting factor for the growth of plants and thus the ecosystem as a whole. Nitrogen producing trees, such as palo verde, acacia, and mesquite can make a big difference in this area. Not only do they fix nitrogen from the air and make it into a usable form, but many are well adapted to dry climates with poor soil. They are drought tolerant and fast growing.

As the trees grow, they produce a great amount of biomass. Every two years, the trees at Phoenix ASH & Regrowth are pollarded, and a few select trees are coppiced. The branches and twigs that are cut off are used for a variety of purposes. They are used as feedstock for growing mushrooms, some are used to produce biochar. The bulk are chipped to either produce mulch for various areas around the site or as a bulk carbon source in the compost bins. The biomass produced by pollarding and coppicing becomes a large portion of the biomass we use to feed the soil.

In addition, trees typically have a root structure that mimics the size and extent of the canopy above. When the tree is trimmed back, the tree abandons roots and pulls back, adding as much carbon down in the soil as is harvested from above.

Some of the branches that are either trimmed out or are the result of random pruning throughout the year are used to create new garden beds. This use of hugelkultur adds a long-lasting source of carbon to the soil and provides a lasting source of food for the soil biome where it is needed most.

Woody debris that is too big for the chipper, unusable for mushroom feedstock, or otherwise scrap material is processed into biochar. The biochar is added to the compost. Once there, it collects nutrients through the processing process. Then it is added to the soil with the rest of the compost where it is used to improve soil quality in perpetuity.

Growing mushrooms is difficult in the desert, but it can be managed. Mushrooms are used in the intermediary process between wood chips and soil creation and provide an additional product. We are also working to find ways to use mushrooms to improve degraded areas of the site. This is a technology that has a lot of potential and we are working on finding a way around the challenges to best make it work.

Phoenix ASH & Rebirth is located in a very brittle environment and the bulk of the site is being managed with this in mind. However, many of our common vegetables require quite a bit more water, thus necessitating a non-brittle microclimate. In this interest, we are looking for technologies that help use the water resources available onsite to their maximum utility. Aquaponics has some great potential in this respect, being particularly efficient with both water and nutrients. However, as a soil-less technology, it doesn’t fit as well with the goals of the site. We are exploring other options to improve the technology to be more organic.

As you can see, we have a whole lot going on for just a half acre. But combined, these techniques work closely together to make some significant changes in a degraded environment. Please help me in spreading the word. If we can turn a half acre in downtown Phoenix into a productive food forest and organic farm, it can be done anywhere. We just have to have a way to get these concepts out there and teach people to implement them. This world is fixable, and it can be done using the techniques provided to us by nature. Let’s get on this.